Temperature effect on physical and chemical properties of secondary organic aerosol from m-xylene photooxidation

نویسندگان

  • L. Qi
  • S. Nakao
  • P. Tang
  • D. R. Cocker
چکیده

The chemical and physical differences of secondary organic aerosol (SOA) formed at select isothermal temperatures (278 K, 300 K, and 313 K) are explored with respect to density, particle volatility, particle hygroscopicity, and elemental chemical composition. A transition point in SOA density, volatility, hygroscopicity and elemental composition is observed near 290–292 K as SOA within an environmental chamber is heated from 278 K to 313 K, indicating the presence of a thermally labile compound. No such transition points are observed for SOA produced at 313 K or 300 K and subsequently cooled to 278 K. The SOA formed at the lowest temperatures (278 K) is more than double the SOA formed at 313 K. SOA formed at 278 K is less hydrophilic and oxygenated while more volatile and dense than SOA formed at 300 K or 313 K. The properties of SOA formed at 300 K and 313 K when reduced to 278 K did not match the properties of SOA initially formed at 278 K. This study demonstrates that it is insufficient to utilize the enthalpy of vaporization when predicting SOA temperature dependence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of water on gas–particle partitioning of secondary organic aerosol: II. m-xylene and 1,3,5-trimethylbenzene photooxidation systems

An investigation of the effect of relative humidity on aerosol formation from m-xylene and 1,3,5-trimethylbenzene photooxidation is reported. Experiments were performed in the presence and absence of ammonium sulfate seed particles (both aqueous and dry) to ascertain the effect of partitioning of oxidation products into a strong electrolytic solution or onto dry crystalline seed particles. In m...

متن کامل

Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer.

The Aerodyne aerosol mass spectrometer (AMS) was used to characterize physical and chemical properties of secondary organic aerosol (SOA) formed during ozonolysis of cycloalkenes and biogenic hydrocarbons and photo-oxidation of m-xylene. Comparison of mass and volume distributions from the AMS and differential mobility analyzers yielded estimates of "effective" density of the SOA in the range o...

متن کامل

Chemical aging of m-xylene secondary organic aerosol: laboratory chamber study

Secondary organic aerosol (SOA) can reside in the atmosphere for a week or more. While its initial formation from the gas-phase oxidation of volatile organic compounds tends to take place in the first few hours after emission, SOA can continue to evolve chemically over its atmospheric lifetime. Simulating this chemical aging over an extended time in the laboratory has proven to be challenging. ...

متن کامل

Secondary organic aerosol formation from m-xylene, toluene, and benzene

Secondary organic aerosol (SOA) formation from the photooxidation of m-xylene, toluene, and benzene is investigated in the Caltech environmental chambers. Experiments are performed under two limiting NOx conditions; under high-NOx conditions the peroxy radicals (RO2) react only with NO, while under low-NOx conditions they react only with HO2. For all three aromatics studied (m-xylene, toluene, ...

متن کامل

So2 Effect on Secondary Organic Aerosol Formation: Experimental and Modelled Results

Abstract: The effect of SO2 in the photooxidation of a mixture of anthropogenic precursors is studied. For that purpose, five experiments with a mixture of 1,3,5-trimethylbenzene, o-xylene, toluene and octane in the presence of HONO were carried out in the EUPHORE outdoor chamber by adding different initial SO2 concentrations in each experiment. The experimental secondary organic aerosol obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010